3.106 \(\int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=167 \[ \frac {(B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}-\frac {-31 B+i A}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {(-B+i A) \tan ^2(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {-13 B+3 i A}{30 a d (a+i a \tan (c+d x))^{3/2}} \]

[Out]

1/8*(I*A+B)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(5/2)/d*2^(1/2)+1/20*(-I*A+31*B)/a^2/d/(a+
I*a*tan(d*x+c))^(1/2)+1/5*(I*A-B)*tan(d*x+c)^2/d/(a+I*a*tan(d*x+c))^(5/2)+1/30*(3*I*A-13*B)/a/d/(a+I*a*tan(d*x
+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 167, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {3595, 3590, 3526, 3480, 206} \[ -\frac {-31 B+i A}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {(B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}+\frac {(-B+i A) \tan ^2(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {-13 B+3 i A}{30 a d (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]^2*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((I*A + B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(4*Sqrt[2]*a^(5/2)*d) + ((I*A - B)*Tan[c + d
*x]^2)/(5*d*(a + I*a*Tan[c + d*x])^(5/2)) + ((3*I)*A - 13*B)/(30*a*d*(a + I*a*Tan[c + d*x])^(3/2)) - (I*A - 31
*B)/(20*a^2*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3526

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^m)/(2*a*f*m), x] + Dist[(b*c + a*d)/(2*a*b), Int[(a + b*Tan[e + f*x])^(m + 1),
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0]

Rule 3590

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((A*b - a*B)*(a*c + b*d)*(a + b*Tan[e + f*x])^m)/(2*a^2*f*m), x] + Dist[
1/(2*a*b), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[A*b*c + a*B*c + a*A*d + b*B*d + 2*a*B*d*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 + b^2, 0]

Rule 3595

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*a*f*
m), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d*n
) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx &=\frac {(i A-B) \tan ^2(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {\int \frac {\tan (c+d x) \left (2 a (i A-B)-\frac {1}{2} a (A-9 i B) \tan (c+d x)\right )}{(a+i a \tan (c+d x))^{3/2}} \, dx}{5 a^2}\\ &=\frac {(i A-B) \tan ^2(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {3 i A-13 B}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i \int \frac {\frac {1}{2} a^2 (3 i A-13 B)-a^2 (A-9 i B) \tan (c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx}{10 a^4}\\ &=\frac {(i A-B) \tan ^2(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {3 i A-13 B}{30 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i A-31 B}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {(A-i B) \int \sqrt {a+i a \tan (c+d x)} \, dx}{8 a^3}\\ &=\frac {(i A-B) \tan ^2(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {3 i A-13 B}{30 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i A-31 B}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {(i A+B) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{4 a^2 d}\\ &=\frac {(i A+B) \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}+\frac {(i A-B) \tan ^2(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {3 i A-13 B}{30 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i A-31 B}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.73, size = 176, normalized size = 1.05 \[ \frac {e^{-6 i (c+d x)} \left (1+e^{2 i (c+d x)}\right )^{3/2} \sec ^2(c+d x) \left (\sqrt {1+e^{2 i (c+d x)}} \left (B \left (-19 e^{2 i (c+d x)}+83 e^{4 i (c+d x)}+3\right )-3 i A \left (-3 e^{2 i (c+d x)}+e^{4 i (c+d x)}+1\right )\right )+15 (B+i A) e^{5 i (c+d x)} \sinh ^{-1}\left (e^{i (c+d x)}\right )\right )}{240 a^2 d \sqrt {a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]^2*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((1 + E^((2*I)*(c + d*x)))^(3/2)*(Sqrt[1 + E^((2*I)*(c + d*x))]*((-3*I)*A*(1 - 3*E^((2*I)*(c + d*x)) + E^((4*I
)*(c + d*x))) + B*(3 - 19*E^((2*I)*(c + d*x)) + 83*E^((4*I)*(c + d*x)))) + 15*(I*A + B)*E^((5*I)*(c + d*x))*Ar
cSinh[E^(I*(c + d*x))])*Sec[c + d*x]^2)/(240*a^2*d*E^((6*I)*(c + d*x))*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

fricas [B]  time = 0.87, size = 391, normalized size = 2.34 \[ \frac {{\left (15 \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {-\frac {A^{2} - 2 i \, A B - B^{2}}{a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (\frac {{\left (4 \, \sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {A^{2} - 2 i \, A B - B^{2}}{a^{5} d^{2}}} + {\left (4 i \, A + 4 \, B\right )} a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 15 \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {-\frac {A^{2} - 2 i \, A B - B^{2}}{a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-\frac {{\left (4 \, \sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {A^{2} - 2 i \, A B - B^{2}}{a^{5} d^{2}}} - {\left (4 i \, A + 4 \, B\right )} a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + \sqrt {2} {\left ({\left (-3 i \, A + 83 \, B\right )} e^{\left (6 i \, d x + 6 i \, c\right )} + {\left (6 i \, A + 64 \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} + {\left (6 i \, A - 16 \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - 3 i \, A + 3 \, B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/120*(15*sqrt(1/2)*a^3*d*sqrt(-(A^2 - 2*I*A*B - B^2)/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log((4*sqrt(2)*sqrt(1/2)*
(a^3*d*e^(2*I*d*x + 2*I*c) + a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(-(A^2 - 2*I*A*B - B^2)/(a^5*d^2)) +
 (4*I*A + 4*B)*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(I*A + B)) - 15*sqrt(1/2)*a^3*d*sqrt(-(A^2 - 2*I*A*B - B^2)
/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-(4*sqrt(2)*sqrt(1/2)*(a^3*d*e^(2*I*d*x + 2*I*c) + a^3*d)*sqrt(a/(e^(2*I*d
*x + 2*I*c) + 1))*sqrt(-(A^2 - 2*I*A*B - B^2)/(a^5*d^2)) - (4*I*A + 4*B)*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(
I*A + B)) + sqrt(2)*((-3*I*A + 83*B)*e^(6*I*d*x + 6*I*c) + (6*I*A + 64*B)*e^(4*I*d*x + 4*I*c) + (6*I*A - 16*B)
*e^(2*I*d*x + 2*I*c) - 3*I*A + 3*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-5*I*d*x - 5*I*c)/(a^3*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \tan \left (d x + c\right )^{2}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*tan(d*x + c)^2/(I*a*tan(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 0.24, size = 124, normalized size = 0.74 \[ -\frac {2 i \left (-\frac {\left (\frac {A}{8}-\frac {i B}{8}\right ) \sqrt {2}\, \arctanh \left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{2 \sqrt {a}}-\frac {-\frac {7 i B}{8}-\frac {A}{8}}{\sqrt {a +i a \tan \left (d x +c \right )}}-\frac {a \left (5 i B +3 A \right )}{12 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}+\frac {a^{2} \left (i B +A \right )}{10 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {5}{2}}}\right )}{d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

-2*I/d/a^2*(-1/2*(1/8*A-1/8*I*B)*2^(1/2)/a^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))-(-7/8*I
*B-1/8*A)/(a+I*a*tan(d*x+c))^(1/2)-1/12*a*(3*A+5*I*B)/(a+I*a*tan(d*x+c))^(3/2)+1/10*a^2*(A+I*B)/(a+I*a*tan(d*x
+c))^(5/2))

________________________________________________________________________________________

maxima [A]  time = 0.84, size = 141, normalized size = 0.84 \[ -\frac {i \, {\left (15 \, \sqrt {2} {\left (A - i \, B\right )} \sqrt {a} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) + \frac {4 \, {\left (15 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} {\left (A + 7 i \, B\right )} a - 10 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} {\left (3 \, A + 5 i \, B\right )} a^{2} + 12 \, {\left (A + i \, B\right )} a^{3}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\right )}}{240 \, a^{3} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

-1/240*I*(15*sqrt(2)*(A - I*B)*sqrt(a)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) +
sqrt(I*a*tan(d*x + c) + a))) + 4*(15*(I*a*tan(d*x + c) + a)^2*(A + 7*I*B)*a - 10*(I*a*tan(d*x + c) + a)*(3*A +
 5*I*B)*a^2 + 12*(A + I*B)*a^3)/(I*a*tan(d*x + c) + a)^(5/2))/(a^3*d)

________________________________________________________________________________________

mupad [B]  time = 6.74, size = 187, normalized size = 1.12 \[ \frac {A\,1{}\mathrm {i}}{20\,d\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}+\frac {A\,{\mathrm {tan}\left (c+d\,x\right )}^2\,1{}\mathrm {i}}{4\,d\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}+\frac {\frac {B\,a^2}{5}+\frac {7\,B\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2}{4}-\frac {5\,B\,a\,\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}{6}}{a^2\,d\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}-\frac {\sqrt {2}\,A\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-a}}\right )\,1{}\mathrm {i}}{8\,{\left (-a\right )}^{5/2}\,d}+\frac {\sqrt {2}\,B\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {a}}\right )}{8\,a^{5/2}\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((tan(c + d*x)^2*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

(A*1i)/(20*d*(a + a*tan(c + d*x)*1i)^(5/2)) + (A*tan(c + d*x)^2*1i)/(4*d*(a + a*tan(c + d*x)*1i)^(5/2)) + ((B*
a^2)/5 + (7*B*(a + a*tan(c + d*x)*1i)^2)/4 - (5*B*a*(a + a*tan(c + d*x)*1i))/6)/(a^2*d*(a + a*tan(c + d*x)*1i)
^(5/2)) - (2^(1/2)*A*atan((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*(-a)^(1/2)))*1i)/(8*(-a)^(5/2)*d) + (2^(1
/2)*B*atanh((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*a^(1/2))))/(8*a^(5/2)*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan ^{2}{\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral((A + B*tan(c + d*x))*tan(c + d*x)**2/(I*a*(tan(c + d*x) - I))**(5/2), x)

________________________________________________________________________________________